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Preview: Structure of Measures
Three Measures. Let a; > 0 be weights with >, a; = 1.
Let {x; : i > 1}, {4 : i >1},{S;:i> 1} be a dense set of points,
unit line segments, unit squares in the plane.

po = 3724 ai Ox, =375 ai Ly, p2 =22 a P,
> Lo, 11, W2 are probability measures on R?
» The support of u is the smallest closed set carrying y;
Spt Lo = Spt 41 = spt pp = R?
> u; is carried by i-dimensional sets (points, lines, squares)

» The support of a measure is a rough approximation that hides
the underlying structure of a measure



Part I. Curves

Part Il. Subsets of Curves

Part lll. Rectifiability of Measures



What is a curve?

Acurve [ C R" is a continuous image of [0, 1]:

There exists a continuous map f : [0, 1] — R” such that I = ([0, 1])

A continuous map f with ' = ([0, 1]) is called a parameterization of I
» There are curves which do not have a 1-1 parameterization

» There are curves which have topological dimension > 1
A curve I is rectifiable if 3f with sup, . .,

S IF(x) = Flxg-1)| < o0

[m]
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When | think of curves...







When is a set a curve?

Theorem (Hahn-Mazurkiewicz)

A nonempty set ' C R" is a curve if and only if

I is compact, connected, and locally connected

The proof of the forward direction is an exercise

The proof of the reverse direction is content of the theorem:

[m]

must construct a parameterization from only topological information
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Examples of sets which are not curves

Theorem (Hahn-Mazurkiewicz)

A nonempty set ' C R" is not a curve if and only if
I is not compact or disconnected or not locally connected

Unbounded a straight line
Not Closed an open line segment
Disconnected a Cantor set

Not Locally Connected acomb




When is a set a rectifiable curve?

Theorem (Wazewski)
Let ' C R" be nonempty. TFAE:
1. T is a rectifiable curve (finite total variation)
2. T is compact, connected, and H*(I') < oo
3. Tis a Lipschitz curve, i.e. there exists a Lipschitz continuous map
f:]0,1] — R" such that I = 7([0, 1])

H! denotes the 1-dimensional Hausdorff measure
f is Lipschitz if 3C < oo such that |f(x) — f(y)| < C|x — y| forall x, y

The proof of (1) = (2) is an exercise

The proof of (3) = (1) is trivial



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Goal: build a parameterization for the set I’



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

*
00000’ *

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 1: approximate I by 2~ %-nets V,, k > 1



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 2: draw piecewise linear spanning tree I, through V



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 2: draw piecewise linear spanning tree I, through V



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 2: draw piecewise linear spanning tree I, through V



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 2: draw piecewise linear spanning tree I, through V



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 2: draw piecewise linear spanning tree I, through V



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

N

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

/

\

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

/

\

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

N\

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

%

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

~—

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Y/

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R"is compact, connected, H!(I') < co = T is Lipschitz curve

Step 3: pick a 2-1 tour of edges in the tree ',



Proof by Picture

I C R" is compact, connected, #!(I') < oo = T is Lipschitz curve

Step 4: tour defines piecewise linear map f; : [0, 1] — T,



Proof by Picture

I c R"is compact, connected, H1(I') < co = T is Lipschitz curve

Step 5: length of i-th edge < H(E N B(v;, - 275))



Proof by Picture

I C R" is compact, connected, #*(I') < oo == T is Lipschitz curve

Conclusion: Lip f, < 32H!(T"). Hence f,, = f : [0, 1] — T Lipschitz



Open Problem #1

Theorem (Wazewski)

Let T C R" be nonempty. TFAE:
1. T is a rectifiable curve (finite total variation)
2. T is compact, connected, and H*(I') < oo

3. Tis a Lipschitz curve, i.e. there exists a Lipschitz continuous map
f:]0,1] — R" such that I = 7([0, 1])

Generalize Wazewski's theorem
to higher dimensional curves



Snowflakes and Squares
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Snowflakes and Squares

Open Problem (#2)

For each real s € (1, 00), characterize curves T C R" with H*(I') < oo

Open Problem (#3)

For each real s € (1, c0), characterize (1/s)-Holder curves, i.e. sets
that can be presented as h(|[0, 1]) for some map h : [0, 1] — R" with

[h(x) = h(y)| < Clx — y|'/*

Open Problem (#4)

For each integer m > 2, characterize Lipschitz m-cubes, i.e. sets that
can be presented as f([0, 1]™) for some Lipschitzmap f : [0, 1]™ — R".



Obstruction to a Holder Wazewski Theorem

> Every (1/s)-Holder curve has H5(IN) < oo

» There are curves I with #°(I') < co that are not (1/s)-Holder.

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a curve I' C R"” such that H*(I N B(x, r)) ~ r*,
but T is not a (1/s)-Hélder curve.



Obstruction to a Holder Wazewski Theorem

> Every (1/s)-Holder curve has H5(IN) < oo

» There are curves I with H*(I') < oo that are not (1/s)-Hdlder.

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a curve I' C R"” such that H*(I N B(x, r)) ~ r*,
but T is not a (1/s)-Hélder curve.

Idea.

Look at the cylinder C x [0, 1] C R? over the standard “middle thirds”
Cantor set C C R. Adjoining the line segment [0, 1] x {0} makes the
set connected, but it is not locally connected. Adjoining additional
intervals /; x {t;} on a dense set of heights (“rungs”) makes the set
locally connected. We call this a Cantor ladder.

A modified version of this gives the desired set. O



Sufficient conditions for Holder curves

Theorem (Remes 1998)

Let S C R" be a self-similar set satisfying the open set condition.
If S is connected, then S is a (1/s)-Hélder curve, s = dimy S.



Sufficient conditions for Holder curves

Theorem (Remes 1998)

Let S C R" be a self-similar set satisfying the open set condition.
If S is connected, then S is a (1/s)-Hélder curve, s = dimy S.

Aset E C R"is e-flat if for every x € E and 0 < r < diam E, there
exists aline £ such that dist(x, £) < er forall x € E N B(x, r).

Theorem (B, Naples, Vellis 2018)

Assume that E C R" is e-flat with € < 1. If E is connected, compact,
H*(E) < oo and H*(E N B(x,r)) 2 r®, then E is a (1/s)-Hblder curve
with a one-to-one parameterization.
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Analyst’s Traveling Salesman Problem

Given a bounded set E C R” (an infinite list of cities),
decide whether or not E is a subset of a rectifiable curve.

If so, construct a rectifiable curve I containing E that is
short as possible.

This is solved for

» EinR? by P. Jones (1990)

> EinR" by K. Okikiolu (1992)

E in £, by R. Schul (2007)

E in first Heisenberg group H! by S. Li and R. Schul (2016)
E in Laakso-type spaces by G.C. David and R. Schul (2017)

E is Carnot group by V. Chousionis, S. Li, S. Zimmerman (2018):
necessary condition only

vV v. vy



Not contained in a rectifiable curve:
a countable compact set with one accumulation point

For each k > 2, choose my = k? so that 332, m,* < occ. Arrange squares Si
with side length m;* so that one side of each square lies on a given line;
separate S, and Sy 1 by distance m; *.
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Requires at least 1L7" of length in the domain of £ by Lipschitz condition.



Not contained in a rectifiable curve:
a countable compact set with one accumulation point

Foreach k > 2, choose my = k* sothat 3_72, m,' < co. Arrange squares Sy
with side length m;’! so that one side of each square lies on a given line;
separate Sy and Sk by distance m;*.Let Vi be collection of m? points in Si
separated by distance at least m; 2. Let E be the closure of [ J;*, V..

Suppose I' = ([0, 1]) D E for some f with |x — y| > L™|f(x) — f(y)|

To contain Vi, the curve I must cross m; — 1 gaps of length at least m, 2.
Requires at least 1L7" of length in the domain of £ by Lipschitz condition.

So for I to contain E there would have to be infinite length in the domain of £,
which is a contradiction.



Unilateral Linear Approximation Numbers

T — - 1 Be(Q)diam(Q)

Q| ——

For any nonempty set £ C R"” and bounded “window” Q C R”",
the Jones beta number of E in Q is

. dist(x, £)
Pe(Q) = |ill':.]efexesgr3Q diam Q

€[0,1].

If EN Q = 0, we also define Be(Q) = 0.



Analyst’s Traveling Salesman Theorem

T~ I Be(Q)diam(Q)

Theorem (P. Jones (1990), K. Okikiolu (1992))
Let E C R" be a bounded set. Then E is contained in a rectifiable curve
if and only if

Sg = Z 65(30)2diam Q<

dyadic Q
More precisely:

1. If S < oo, then there is a curve I O E such that
HY(T) <, diam E + Sg.
2. If T is a curve containing E, then diam E + Sg <, H(T).



Open Problem #5

Theorem (P. Jones (1990), K. Okikiolu (1992))

Let E C R" be a bounded set. Then E is contained in a rectifiable curve
if and only if
Sg = Z 65(3Q)2diam Q<

dyadic Q
More precisely:

1. If S < oo, then there is a curve I O E such that
HY(T) <, diam E + Sg.
2. If T is a curve containing E, then diam E + Sg <, H(I).

Find characterizations of subsets
of other nice families of sets



Holder Traveling Salesman Theorem

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a constant By = (o(s, n) > 0 such that:
If E C R" is a bounded set and

Z (diam Q)* < o0,
Q dyadic
Be(3Q)>Bo

then E is contained in a (1/s)-Hélder curve.

Corollary
Assume s > 1. If E C R" is a bounded set and

> Be(3Q)*(diam Q)° < oo,

Q dyadic
side@<1

then E is contained in a (1/s)-Holder curve.



Holder Traveling Salesman Theorem

Theorem (B, Naples, Vellis 2018)

For all s > 1, there exists a constant By = [Bo(s, n) > 0 such that:
If E C R" is a bounded set and

Z (diam Q) < oo,
Q dyadic
BE(3Q)>Bo

then E is contained in a (1/s)-Holder curve.

Remarks
» There is a version of the theorem in infinite-dimensional Hilbert space
» Construction of approximating curves ', are similarto cases =1
» But unlike the case s = 1, we do not have Wazewski's theorem!!!
> So we have reimagine Jones' proof of the traveling salesman

construction and build explicit parameterization of the ',

» The condition is not necessary (e.g. fails for a Sierpinski carpet)
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Measure Theorist’'s Traveling Salesman Problem

Given a finite Borel measure . on R” with bounded
support (< u(R"\ B) = 0 for some bounded set B),
decide whether or not w is carried by a rectifiable curve.

If so, construct a rectifiable curve I carrying w,
ie. u(R"\T)=0.

This is solved for

» 4 such that u(B(x, r)) ~ r for x € spt u by Lerman (2003)
» 1 any finite Borel measure by B and Schul (2017)



Non-homogeneous L? Jones 8 numbers

Let u be a Radon measure on R". For every cube @, define
Ba(, 3Q) = infline L B2(1, 3Q, L) € [0, 1], where

dist(x, L)\ > du(x)
P2(k3Q. L) = /m (diam3Q ) K(3Q)

3Q

“Non-homogeneous” refers to the normalization 1/u(3Q).



Non-homogeneous L? Jones 8 numbers

Let u be a Radon measure on R". For every cube Q, define
B2, 3Q) = infline L B2(1, 3Q, L) € [0, 1], where

B dist(x, L)\ * du(x)
Pa(k. 3Q. L) = /30 <diam3Q ) #(3Q)

S D ==

=0



Traveling Salesman for Ahlfors Regular Measures

Theorem (Lerman 2003)

Let u be a finite measure on R" with bounded support. Assume that
w(B(x,r))~r forallx esptpand0<r<1.
Then there is a rectifiable curve I' such that u(R" \ I') = 0 if and only if

Z Bo(1, 3Q)? diam Q < oo.

dyadic Q



Traveling Salesman for Ahlfors Regular Measures
Theorem (Lerman 2003)
Let u be a finite measure on R" with bounded support. Assume that
w(B(x,r))~r forallx esptpand0<r<1.
Then there is a rectifiable curve I' such that u(R" \ I') = 0 if and only if

Z B, 3Q)2diam Q < oco.

dyadic Q

Theorem (Martikainen and Orponen 2018)

There exists a Borel probability v on R* with bounded support such that

Z B2(v,3Q)* diam Q < oo

dyadic Q

but v is purely T-unrectifiable, i.e. v(I') = 0 for every rectifiable curve T.



Anisotropic L2 Jones 8 numbers (B-Schul 2017)

Given dyadic cube Q in R”, A*(Q) denotes a subdivision of Q* = 1600/nQ
into dyadic cubes R of same / previous generation as @ s.t. 3R C Q.

Q*

For every Radon measure . on R” and every dyadic cube Q, we define
B> (14, Q)* = infiine L Maxrea+(q) B2, 3R, L)?, where

- dist(x, L)\ du(x)
Pau. 3R, L) = /3R ( diam 3R ) w(3R)




Traveling Salesman Theorem for Measures

Theorem (B and Schul 2017)

Let u be a finite measure on R" with bounded support. Then there is a
rectifiable curve I such that u(R" \ T') = 0 if and only if

Z B> (., Q) diam Q < oo.

dyadic Q

» Proof uses both halves of the traveling salesman theorem curves

» For the sufficient half, need extension of the traveling salesman
construction without requirement Vi1 D Vi (see B-Schul 2017)

» Using similar techniques, we can also get a characterization of
countably 1-rectifiable Radon measures



Identification of 1-rectifiable Radon measures

For any Radon measure y on R"” and x € R”, the lower density is:
- u(B(x,r))
DY, x) =1 f——— ,
D (u, x) im in oy € [0, oq]

and the anisotropic square function is:

di
Kl = 3 s QP )xQ(x)e[o,ool
a2

Theorem (B and Schul 2017)

If i is a Radon measure on R", then
> 1L {x:Du, x)>0and Ji(u, x) < co} is countably 1-rectifiable
> ul {x: D' x)=0o0rJ5(u, x) = oo} is purely 1-unrectifiable



Open Problem #6

Given a measurable space (X, M) and a family of sets V, every
o-finite measure . on R” decomposes as u = wy + p3y, where

>y is carried by N upn (X \ U2, Ti) = 0 forsomel; e N
> wuy is singular to NV puy () = 0 forall T € V.
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Given a measurable space (X, M) and a family of sets V, every
o-finite measure . on R” decomposes as u = wy + p3y, where

>y is carried by N upn (X \ U2, Ti) = 0 forsomel; e N
> wuy is singular to NV puy () = 0 forall T € V.

Identification Problem:

Given (X, M), N' C M, and of F a family of o-finite
measures on M, find properties P(u, x) and Q(u, x)
defined for all u € F and x € X such that

pn =pL{x: P x)tand uy = pi {x: Q(u, x)}



Open Problem #6

Given a measurable space (X, M) and a family of sets V, every
o-finite measure . on R” decomposes as u = wy + p3y, where

>y is carried by N upn (X \ U2, Ti) = 0 forsomel; e N
> wuy is singular to NV puy () = 0 forall T € V.

Identification Problem:

Given (X, M), N' C M, and of F a family of o-finite
measures on M, find properties P(u, x) and Q(u, x)
defined for all u € F and x € X such that

pn =pL{x: P x)tand uy = pi {x: Q(u, x)}

An important case is X = R", \ is Lipschitz images of R™ (m > 2),
and F is Radon measures on R”



Criteria for fractional rectifiability

A model for fractional rectifiability based on Holder continuous images of
R™ in R"” was proposed by Martin and Mattila (1993,2000).

Theorem (B, Vellis 2018)

Lets > 1and m <t < s. Assume that u is a Radon measure on R" such that

0 < timinf KB iy g (BLa 1))
rl0 r .

rl0

< o0 u-a.e. x.

Then v is carried by (m/s)-Hélder continuous images of [0, 1]™.

Theorem (B, Naples, Vellis 2018)

Let s > 1. Assume that u is a Radon measure on R" such that

lim sup B 2))

< oo u-a.e x, and
o w(B(x.r)) g

/o B2(u, B(x, r))am% < oo p-a.e x.

Then w is carried by (1/s)-Hélder curves.



Thank you for listening!



